Penerapan Metode K-Means Dalam Mengelompokkan Tingkat Kesembuhan Penderita Covid-19

  • Hastha Sunardi Universitas Indo Global Mandiri
Keywords: Covid-19, self-isolation, clusters and healing rates

Abstract

The coronavirus pandemic (Covic-19) that began to be heard in Indonesia around the end of February 2020 seems to continue, where none of the experts from one discipline are able to predict this pandemic, when it ends. Unlike previous research that focused more on the extent of the spread of Covid-19. This research applies the K-Means method to focus on grouping the cure rate of patients exposed to Covid-19 with a self-isolation healing process. There is no difference in sex in the transmission process, so gender data is used as a id_penderita and not nominal type, so there is no need for initialization process. Therefore, it is quite interesting to analyze that the age, length of isolation, and number of family members is related to the spread of Covid-19 and is more focused on grouping healing rates with self-isolation. As for the average value for each cluster, the highest average value for age is found in cluster 3 at 53.8 years and the lowest in cluster 2 by 30 years. For the length of isolation the longest average value in cluster 1 is 29.7 days and the fastest in cluster 3 is 14 days.

References

[1] Meida Cahyo Untoro , Leslie Anggraini , Maria Andin , Hesti Retnosar and M. Anas Nasrulloh,“Penerapan metode k-means clustering data COVID-19 di Provinsi Jakarta,”Jurnal Ilmiah Sistem Informasi, vol. 11, no. 2, pp. 59–68, 2021
[2] R. A. Indraputra and R Fitriana,“K-Means Clustering Data Covid-19,” Jurnal Teknik Industri, vol. 10, no. 3, pp. 275–282, 2020.
[3] A.R. Setiawan,”Lembar Kegiatan Literasi Saintifik untuk Pembelajaran Jarak Jauh Topik Penyakit Coronavirus 2019 (COVID-19),”Edukatif: Jurnal Ilmu Pendidikan vol. 2, no.1, pp. 28-37, 2020.
[4] Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita Covid-19 Berdasarkan Negara di Benua Asia,”Paradig. Informatika. dan Komputer, vol. 22, no. 2, pp. 183–188, 2020.
[5] A. Solichin and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona (Covid-19) di DKI Jakarta Menggunakan K-Means,”Fountain Informatics J., vol. 5, no. 2, pp. 52-61, 2020.
[6] P. P. P. A. N. . F. I. R . Z. Nayuni Dwitri , Jose A Tampubolon , Sandi Prayoga and D. Hartama,“Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia,”JTI (Jurnal Teknol. Informasi), vol. 4, no. 1, pp. 128–132, 2020.
[7] Supranto,“Analisis Multivariat: Arti dan Interpretasi,” Jakarta: PT. Rineka Cipta, 2004.
[8] Triyanto, W. A, “Algoritma K-Medoids untuk Penentuan Strategi Pemasaran,” Simetris, pp. 183–188, 2015.
[9] Larasati, A., “Metode K-Medoids pada Data dengan Pencilan,”Tugas Akhir, Yogyakarta: Universitas Gadjah Mada, 2017.
[10] D. Permata Sari, “Implementasi Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 di Sumatera Barat, “Computer Based Information System Journal, vol. 09, no. 1, p. 50-56, 2021.
[11] Heeseok Lee, “Justfying Database Normalization: A Cost/Benefit Model, Information Processing & Management,”Elvisevier Science Ltd., vol. 31, no.1, pp. 59-67, 1995.
[12] Yulia Darmi and Agus Setiawan,“Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk, “Jurnal Media Infotama, vol. 12, no. 2, pp. 148-157, 2016.
Published
2021-10-13
How to Cite
Sunardi, H. (2021). Penerapan Metode K-Means Dalam Mengelompokkan Tingkat Kesembuhan Penderita Covid-19. Teknomatika, 11(02), 127-136. Retrieved from http://ojs.palcomtech.com/index.php/teknomatika/article/view/537